BTK blocks the inhibitory effects of MDM2 on p53 activity
نویسندگان
چکیده
p53 is a tumour suppressor that is activated in response to various types of stress. It is regulated by a complex pattern of over 50 different post-translational modifications, including ubiquitination by the E3 ligase MDM2, which leads to its proteasomal degradation. We have previously reported that expression of Bruton's Tyrosine Kinase (BTK) induces phosphorylation of p53 at the N-terminus, including Serine 15, and increases its protein levels and activity. The mechanisms involved in this process are not completely understood. Here, we show that BTK also increases MDM2 and is necessary for MDM2 upregulation after DNA damage, consistent with what we have shown for other p53 target genes. Moreover, we found that BTK binds to MDM2 on its PH domain and induces its phosphorylation. This suggested a negative regulation of MDM2 functions by BTK, supported by the fact BTK expression rescued the inhibitory effects of MDM2 on p53 transcriptional activity. Indeed, we observed that BTK mediated the loss of the ubiquitination activity of MDM2, a process that was dependent on the phosphorylation functions of BTK. Our data together shows that the kinase activity of BTK plays an important role in disrupting the MDM2-p53 negative feedback loop by acting at different levels, including binding to and inactivation of MDM2. This study provides a potential mechanism to explain how BTK modulates p53 functions.
منابع مشابه
Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways.
Cyclin G1 is a p53-responsive gene that is induced in alternative reading frame (ARF)-arrested cells, yet its role in growth control is unclear. We tested its effects on growth and involvement in the ARF-Mdm2-p53 tumor suppressor pathway. We show that cyclin G1 interacts with ARF, Mdm2, and p53 in vitro and in vivo. At high levels, cyclin G1 induces a G(1)-phase arrest in mammalian cells that c...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملMDM2 Inhibits Axin-Induced p53 Activation Independently of its E3 Ligase Activity
MDM2 plays a crucial role in negatively regulating the functions of tumor suppressor p53. Here we show that MDM2 can inhibit Axin-stimulated p53-dependent apoptosis by suppressing p53 phosphorylation at Ser 46 and apoptosis-related p53 transactivational activity. Interestingly, the ubiquitin E3 ligase activity of MDM2 is not required for this inhibitory effect. Mechanically, either wildtype MDM...
متن کاملSmall molecules that bind the Mdm2 RING stabilize and activate p53.
p53 is a tumor suppressor that responds to a variety of stresses such as oncogenes and DNA damage by activating its transcriptional targets to allow repair or elimination of damaged cells. In the absence of stress signals, p53 needs to be kept in check and this is achieved by the E3 ligase MDM2. For tumors that retain wild-type p53, therapeutic strategies aimed at removing the inhibitory activi...
متن کامل